Wavefront shaping for depth-enhanced OCT imaging

Jonas Kanngießer, M.Sc.

Hannoversches Zentrum für Optische Technologien (HOT)
Optical coherence tomography

- 3D imaging
- Sub-surface imaging
- Biomedical applications
 - Dermatology
 - Ophthalmology
 - Cardiology
 -

Human fingertip

Metallic tool

OCT calibration target

© 2020 Jonas Kanngießer, M. Sc.
OCT in a nutshell
OCT imaging

Limited penetration depth due to scattering

OCT scan at human nailfold region. (i) epidermis; (ii) dermis; (iii) cuticle; (iv) nail plate; (v) nail matrix; (vi) nail bed
OCT design

- Spatial light modulator (SLM) for beam shaping
- Independent shaping at reference and sample beam

© 2020 Jonas Kanngießer, M. Sc.
Wavefront shaping

SLM Incident beam detector detector

Intensity vs. # iteration

© 2020 Jonas Kanngießer, M. Sc.
Iterative wavefront shaping

- Apply phase pattern to SLM
- Acquire OCT signal
- Optimize phase pattern to maximize signal

Pros
- Experimentally robust

Cons
- Very slow

Iterative

For each wavefront segment
- Apply different test-phases
- Choose value resulting in strongest signal

Genetic

- Create random phase patterns
- Rank according to resulting signal
- Create new from best-ranked patterns
- Repeat
Reflection matrix approaches

- Propagation is linear
- Matrix acquisition: apply one mode after another and get OCT signal

\[E_{\text{det}} = T_{mn} A_n \]

\[E_{\text{det}} = R_{mn} A_n \]
Reflection matrix approach

- Point-like enhancement
- Wide-target enhancement
- Depth-scan enhancement
 - One matrix acquisition per depth-scan
- B-scan enhancement

(a) Conventional OCT scan at chicken tissue.
(b) Optimized scan.
(c) Scan with commercial OCT system.
(d) Depth-profiles of (a) and (b).

Kanngießer, J.; Roth, B. (2021): Reflection matrix approach for optical coherence tomography imaging, Physical Review Applied (under review)
Conclusion

• Double interferometer design
 • Easy implementation to existing OCT devices

• Iterative wavefront shaping
 • OCT signal enhancement demonstrated

• Reflection matrix approaches
 • Superior acquisition speed to iterative wavefront shaping
 • Improved algorithms compared to previous work
 • Application to OCT imaging demonstrated

• System too slow for clinical evaluation due to technical constraints
Future work
List of Publications

1. Kanngiesser, J; Rahlves, M.; Roth, B. (2019): *Double interferometer design for independent wavefront manipulation in spectral domain optical coherence tomography*, Scientific Reports 9, art.no. 14651
 DOI: 10.1038/s41598-019-50996-2

 DOI: 10.1364/OL.44.001347

 ISSN 1614-8436, https://www.dgao-proceedings.de/download/120/120_a2.pdf

 ISBN: 978-952-68553-6-3
List of Publications (cont.)

Thank You for Your attention

Jonas Kanngießer, M.Sc.
Hannoversches Zentrum für Optische Technologien (HOT)
jonas.kanngiesser@hot.uni-hannover.de
+49 511 762 19501